
COP 4600: Intro To OS (Memory Management – Part 4) Page 1 © Dr. Mark Llewellyn

COP 4600 – Summer 2013

Introduction To Operating Systems

Memory Management – Part 4

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 407-823-2790

 http://www.cs.ucf.edu/courses/cop4600/sum2013

COP 4600: Intro To OS (Memory Management – Part 4) Page 2 © Dr. Mark Llewellyn

Operating System Software

• Algorithms employed for various aspects of the memory

management unit.

Fetch Policy

 Demand

 Pre-paging

Resident Set Management

 Resident set size

 Fixed

 Variable

 Replacement Scope

 Global

 Local

Placement Policy Cleaning Policy

 Demand

 Pre-cleaning

Replacement Policy

 Basic Algorithms

 Optimal

 LRU

 FIFO

 Clock

 Page Buffering

Load Control

 Degree of Multi-programming

COP 4600: Intro To OS (Memory Management – Part 4) Page 3 © Dr. Mark Llewellyn

Design Considerations – More Details

• The primary issue is one of performance: we need to

minimize the rate at which page faults occur due to

the overhead involved with handling a page fault.

– At a minimum the overhead includes deciding which resident page or

pages to replace, and the I/O of exchanging the pages. Also the OS

must schedule another process to run during the page I/O, causing a

process switch.

• Accordingly, we’d like to arrange matters so that, during the

time that a process is executing, the probability of referencing

a word on a missing page is minimized.

• There will be no overall best policy that will cover all

occasions.

COP 4600: Intro To OS (Memory Management – Part 4) Page 4 © Dr. Mark Llewellyn

Design Considerations – More Details

• The task of memory management in a paging

environment is fiendishly complex.

• Furthermore, the performance of any particular set of

policies depends on main memory size, the relative speed

of main and secondary memory, the size and number of

processes competing for resources, and the execution

behavior of individual programs.

• Smaller OS designers should pick a set of policies that

will provide “good” behavior over a wide range of

conditions. Larger OS should be equipped with

monitoring and control tools to tune the OS based on site

conditions.

COP 4600: Intro To OS (Memory Management – Part 4) Page 5 © Dr. Mark Llewellyn

Fetch Policy
• The fetch policy determines when a page should be brought

into main memory.

• The two common alternatives are demand paging and

prepaging.

• With demand paging, a page is brought into memory only when

a reference is made to a location on that page.

• With prepaging, pages other than the one demanded by a page

fault are brought into main memory. This technique attempts to

take advantage of secondary memory characteristics. For

example, if the pages of a process are stored contiguously in

secondary memory, then it is more efficient to bring in a

number of contiguous pages at one time as opposed to bringing

them in one at a time over an extended period.

COP 4600: Intro To OS (Memory Management – Part 4) Page 6 © Dr. Mark Llewellyn

Placement Policy
• The placement policy determines where in main memory (real

memory) a process piece is to reside.

– Recall that in a pure segmentation system, the placement policy

algorithms of best-fit, first-fit, and next-fit.

• In most modern systems, the placement policy is not a huge

concern due to the flexibility of the address translation

hardware and main memory access hardware since any page-

frame can be accessed with equal efficiency.

• However, in a NUMA (Non-Uniform Memory Access)

multiprocessor, the distributed shared memory of the machine

can be shared by any processor on the machine, but the time for

accessing a particular physical location will vary with the

distance between the processor and the memory module. Thus,

performance depends heavily on the placement policy.

COP 4600: Intro To OS (Memory Management – Part 4) Page 7 © Dr. Mark Llewellyn

Resident Set Management and Replacement Policy

• The replacement policy involves several interrelated concepts.

– How many page frames are to be allocated to each active process.

– Whether the set of pages to be considered for replacement should be

limited to those of the process that caused the page fault or encompass

all the page frames in main memory.

– Among the set of pages to be considered, which particular page should

be selected for replacement.

• The first two concepts are resident set management, and the

third concept is the replacement policy.

• Resident set management deals with frame allocation and

replacement scope.

• Replacement policy deals with the selection of the page to

replace.

COP 4600: Intro To OS (Memory Management – Part 4) Page 8 © Dr. Mark Llewellyn

Resident Set Management

• Deciding how many page frames to allocate to a process is

dictated by the following concepts:

– The smaller the amount of memory allocated to a single process, the

more processes that can reside in the main memory at any one time,

hence a higher degree of multiprogramming. This increases the

probability that the OS will find at least one ready process at any given

time and thus reduce the time lost to swapping.

– If a relatively small number of pages of a process are in main memory,

then despite the principle of locality, the rate of page faults will be rather

high.

– Beyond a certain size, additional allocation of main memory to a certain

process will have no noticeable effect on the page fault rate for that

process because of the principle of locality.

COP 4600: Intro To OS (Memory Management – Part 4) Page 9 © Dr. Mark Llewellyn

Resident Set Management

• These concepts lead to two different policies that are to be

found in most modern operating systems.

• A fixed allocation policy gives a process a fixed (static) number

of page frames within which it must execute.

– The number of page frames allocated to a process does not change

during its lifetime.

• A variable allocation policy gives a process a variable

(dynamic) number of page frames within which it must execute.

– A process that incurs a high fault rate will have its frame allocation

increased at the expense of a process whose fault rate is much lower.

COP 4600: Intro To OS (Memory Management – Part 4) Page 10 © Dr. Mark Llewellyn

Replacement Scope

• The scope of a replacement strategy can be categorized as local

or global.

• A local replacement policy chooses only among the resident

pages of the process that generated the page fault in selecting a

page to replace.

• A global replacement policy considers all unlocked pages in

main memory in selecting the page to replace, regardless of

which process owns a particular page.

• The frame allocation schemes combined with the replacement

scope policies give rise to the various possibilities shown in the

table on page 12.

COP 4600: Intro To OS (Memory Management – Part 4) Page 11 © Dr. Mark Llewellyn

Frame Locking

• One restriction on the replacement strategy is that some of the

frames in main memory may be locked.

• When a frame is locked, the page currently in that frame many

not be replaced.

• Much of the kernel of the OS is held on locked frames, as well

as key OS control structures. In addition, I/O buffers, and other

time-critical areas may be locked in main memory frames.

COP 4600: Intro To OS (Memory Management – Part 4) Page 12 © Dr. Mark Llewellyn

Allocation Policy And Replacement Scope

Local Replacement Global Replacement

Fixed Allocation Number of frames allocated

to a process is fixed.

Page to be replaced is chosen

from among the frames

allocated to that process only.

Not possible

Global Allocation The number of frames

allocated to a process may

vary during its lifetime

(working set).

Page to be replaced is chosen

from among the frames

allocate to that process only.

Page to be replaced is

chosen from all available

frames in main memory,

this may cause the size of

the resident set of

processes to vary.

COP 4600: Intro To OS (Memory Management – Part 4) Page 13 © Dr. Mark Llewellyn

Cleaning Policy

• The cleaning policy is just the opposite of the fetch policy; its

concerned with determining when a modified page should be

written to secondary memory.

• Two common alternatives are demand cleaning and

precleaning.

• Demand cleaning is when a page is written to secondary

memory only when it has been selected for replacement.

• Precleaning will write a modified page to secondary memory

before their page frames are needed so that writes can be

batched.

COP 4600: Intro To OS (Memory Management – Part 4) Page 14 © Dr. Mark Llewellyn

Load Control

• Load control is concerned with determining the number of

processes that can be resident in main memory, i.e., the degree

of multiprogramming.

COP 4600: Intro To OS (Memory Management – Part 4) Page 15 © Dr. Mark Llewellyn

Basic Page Replacement Policies

1. Find a free frame:

 - If there is a free frame, use it

 - If there is no free frame, use a page replacement

 algorithm to select a victim frame

2. Bring the desired page into the (newly) freed frame;

update the page and frame tables

3. Find the location of the desired page on disk

4. Restart the process

COP 4600: Intro To OS (Memory Management – Part 4) Page 16 © Dr. Mark Llewellyn

Page Replacement

COP 4600: Intro To OS (Memory Management – Part 4) Page 17 © Dr. Mark Llewellyn

Page Replacement Algorithms

• Want lowest page-fault rate possible.

• Evaluate algorithm by running it on a particular

string of memory references (reference string) and

computing the number of page faults on that string

• In many of the examples that follow, the reference

string is:

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

COP 4600: Intro To OS (Memory Management – Part 4) Page 18 © Dr. Mark Llewellyn

Graph of Page Faults Versus The Number

of Frames

COP 4600: Intro To OS (Memory Management – Part 4) Page 19 © Dr. Mark Llewellyn

First-In-First-Out (FIFO) Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames (3 pages can be in memory at a time per process)

 1

2

3

9 page faults

fr
a
m

e
 1 1 1

2

3

2

2

3

4

3 4

4

1 2

1

1

2

5

1 1

2

5 5

2

2

5

3

5 5

3

4 4

3

1 2 3 4 1 2 5 1 2 3 4 5

reference string

Indicates

page

fault has

occurred

COP 4600: Intro To OS (Memory Management – Part 4) Page 20 © Dr. Mark Llewellyn

First-In-First-Out

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 4 frames (4 pages can be in memory at a time per process)

– Belady’s Anomaly: more frames  more page faults

1

2

3

10 page faults

fr
a
m

e

1 1 1

2

3

2

1

2

3

1 1

2

3 3

2

2

3

4

3 4

4

5 1

5

5

1

2

1 2

2

3 4

3

1 2 3 4 1 2 5 1 2 3 4 5

reference string

4 4 4 5 1 2 3 4 5 4

COP 4600: Intro To OS (Memory Management – Part 4) Page 21 © Dr. Mark Llewellyn

First-In-First-Out – Another Example

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory at a time per process)

reference string

1

2

3

fr
a
m

e
 7

7

7

7 0

7

7 0

1

0

7 1

2

0

7 1

2

1

7 2

3

2

7 3

0

3

7 0

4

0

7 4

2

4

7 2

3

2

7 3

0

2

7 3

0

2

7 3

0

3

7 0

1

0

7 1

2

0

7 1

2

0

7 1

2

1

7 2

7

2

7 7

0

7

7 0

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 1 0

15 page faults

• Does this reference string exhibit Belady’s Anomaly?

COP 4600: Intro To OS (Memory Management – Part 4) Page 22 © Dr. Mark Llewellyn

First-In-First-Out – Another Example

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

• 4 frames (4 pages can be in memory at a time per process)

reference string

1

2

3

fr
a
m

e

10 page faults 4

7 7

0

7

0

1

7

0

1

2

7

0

1

2

0

1

2

3

0

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

2

3

4

0

2

3

4

0

2

3

4

0

3

4

0

1

4

0

1

2

4

0

1

2

4

0

1

2

0

1

2

7

0

1

2

7

0

1

2

3

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

• Answer: No, at least not with 3 and 4 pages.

COP 4600: Intro To OS (Memory Management – Part 4) Page 23 © Dr. Mark Llewellyn

FIFO Illustrating Belady’s Anomaly

Belady’s Anomaly

COP 4600: Intro To OS (Memory Management – Part 4) Page 24 © Dr. Mark Llewellyn

Optimal Algorithm

• Replace page that will not be used for longest period of time

• 4 frames example

How do you know this?

• Used for measuring how well your algorithm performs

1

2

3

6 page faults

fr
a
m

e

1 1 1

2

3

2

1

2

3

1 1

2

3 3

2

1

2

3

1 1

2

3 3

2

1

2

3

4 4

2

3 3

2

1 2 3 4 1 2 5 1 2 3 4 5

reference string

4 4 4 5 5 5 5 5 5 4

COP 4600: Intro To OS (Memory Management – Part 4) Page 25 © Dr. Mark Llewellyn

Optimal Algorithm – Another Example

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory at a time per process)

reference string

1

2

3

fr
a
m

e
 7

7

7

7 0

7

7 0

1

2

7 0

1

2

7 0

1

2

7 0

3

2

7 0

3

2

7 4

3

2

7 4

3

2

7 4

3

2

7 0

3

2

7 0

3

2

7 0

3

2

7 0

1

2

7 0

1

2

7 0

1

2

7 0

1

1

7 0

7

1

7 0

7

1

7 0

7

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 1 0

10 page faults

COP 4600: Intro To OS (Memory Management – Part 4) Page 26 © Dr. Mark Llewellyn

Least Recently Used (LRU) Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames (3 pages can be in memory at a time per process)

1

2

3

10 page faults

fr
a
m

e
 1 1 1

2

3

2

2

3

4

3 4

4

1 2

1

1

2

5

2 5

5

1 2

1

1

2

3

2 3

3

4 5

4

1 2 3 4 1 2 5 1 2 3 4 5

reference string

COP 4600: Intro To OS (Memory Management – Part 4) Page 27 © Dr. Mark Llewellyn

LRU Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 4 frames (4 pages can be in memory at a time per process)

1

2

3

8 page faults

fr
a
m

e

1 1 1

2

3

2

1

2

3

2 3

3

4 1

4

4

1

2

4 4

2

5 1

5

5

1

2

1 2

2

3 4

3

1 2 3 4 1 2 5 1 2 3 4 5

reference string

4 1 2 5 1 2 3 4 5 4

COP 4600: Intro To OS (Memory Management – Part 4) Page 28 © Dr. Mark Llewellyn

LRU – Another Example

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory at a time per process)

reference string

1

2

3

fr
a
m

e
 7

7

7

7 0

7

7 0

1

0

7 1

2

1

7 2

0

2

7 0

3

2

7 3

0

3

7 0

4

0

7 4

2

4

7 2

3

2

7 3

0

2

7 0

3

0

7 3

2

3

7 2

1

3

7 1

2

1

7 2

0

2

7 0

1

0

7 1

7

1

7 7

0

7

7 0

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 1 0

12 page faults

• Does this reference string exhibit Belady’s Anomaly?

COP 4600: Intro To OS (Memory Management – Part 4) Page 29 © Dr. Mark Llewellyn

LRU – Another Example

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

• 4 frames (4 pages can be in memory at a time per process)

reference string

1

2

3

fr
a
m

e

8 page faults 4

7 7

0

7

0

1

7

0

1

2

7

1

2

0

1

2

0

3

1

2

3

0

2

3

0

4

3

0

4

2

0

4

2

3

4

2

3

0

4

2

0

3

4

0

3

2

0

3

2

1

0

3

1

2

3

1

2

0

3

2

0

1

2

0

1

7

2

1

7

0

2

7

0

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

• Answer: No, at least not with 3 and 4 pages.

COP 4600: Intro To OS (Memory Management – Part 4) Page 30 © Dr. Mark Llewellyn

Optimal Algorithm

• Replace page that will not be used for longest period of time

• 4 frames example

How do you know this?

• Used for measuring how well your algorithm performs

1

2

3

6 page faults

fr
a
m

e

1 1 1

2

3

2

1

2

3

1 1

2

3 3

2

1

2

3

1 1

2

3 3

2

1

2

3

4 4

2

3 3

2

1 2 3 4 1 2 5 1 2 3 4 5

reference string

4 4 4 5 5 5 5 5 5 4

COP 4600: Intro To OS (Memory Management – Part 4) Page 31 © Dr. Mark Llewellyn

Optimal Algorithm – Another Example

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory at a time per process)

reference string

1

2

3

fr
a
m

e
 7

7

7

7 0

7

7 0

1

2

7 0

1

2

7 0

1

2

7 0

3

2

7 0

3

2

7 4

3

2

7 4

3

2

7 4

3

2

7 0

3

2

7 0

3

2

7 0

3

2

7 0

1

2

7 0

1

2

7 0

1

2

7 0

1

1

7 0

7

1

7 0

7

1

7 0

7

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 1 0

10 page faults

COP 4600: Intro To OS (Memory Management – Part 4) Page 32 © Dr. Mark Llewellyn

LRU Algorithm (cont.)

• While the optimal algorithm is not feasible for implementation,
an approximation of it is possible.

• The main difference between the FIFO and Optimal algorithms
(other than looking backward versus forward in time) is that the
FIFO algorithm uses the time when a page was brought into
memory, whereas the Optimal algorithm uses the time when a
page is to be used.

• If we use the recent past as an approximation of the near future,
then we can replace the page that has not been used for the
longest period of time.

• The Least Recently Used (LRU) algorithm is an approximation
of the optimal algorithm.

COP 4600: Intro To OS (Memory Management – Part 4) Page 33 © Dr. Mark Llewellyn

LRU Example

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames (3 pages can be in memory at a time per process)

1

2

3

10 page faults

fr
a
m

e
 1 1 1

2

3

2

2

3

4

3 4

4

1 2

1

1

2

5

2 5

5

1 2

1

1

2

3

2 3

3

4 5

4

1 2 3 4 1 2 5 1 2 3 4 5

reference string

COP 4600: Intro To OS (Memory Management – Part 4) Page 34 © Dr. Mark Llewellyn

Another LRU Example

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 4 frames (4 pages can be in memory at a time per process)

1

2

3

8 page faults

fr
a
m

e

1 1 1

2

3

2

1

2

3

2 3

3

4 1

4

4

1

2

4 4

2

5 1

5

5

1

2

1 2

2

3 4

3

1 2 3 4 1 2 5 1 2 3 4 5

reference string

4 1 2 5 1 2 3 4 5 4

COP 4600: Intro To OS (Memory Management – Part 4) Page 35 © Dr. Mark Llewellyn

LRU Algorithm (cont.)

• The LRU algorithm can be viewed as the optimal page

replacement looking backward in time rather than forward.

• Strangely, if we let SR be the reverse of the reference string S,

then the page fault rate for the Optimal algorithm on S is the

same as the page-fault rate for the Optimal algorithm on SR.

• Similarly, the page-fault rate for the LRU algorithm on S is the

same as the page-fault rate for the LRU algorithm on SR.

• The examples on the next two pages illustrate this phenomenon.

COP 4600: Intro To OS (Memory Management – Part 4) Page 36 © Dr. Mark Llewellyn

Optimal Algorithm On S and SR
reference string = S

1

2

3

fr
a
m

e
 7

7

7

7 0

7

7 0

1

2

7 0

1

2

7 0

1

2

7 0

3

2

7 0

3

2

7 4

3

2

7 4

3

2

7 4

3

2

7 0

3

2

7 0

3

2

7 0

3

2

7 0

1

2

7 0

1

2

7 0

1

2

7 0

1

1

7 0

7

1

7 0

7

1

7 0

7

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 1 0

10 page faults

reference string = SR

1

2

3

fr
a
m

e
 1

7

1

7 0

1

7 0

7

1

7 0

7

1

7 0

7

1

7 0

2

1

7 0

2

1

7 0

2

3

7 0

2

3

7 0

2

3

7 0

2

3

7 0

2

4

7 0

2

4

7 0

2

3

7 0

2

3

7 0

2

3

7 0

2

1

7 0

2

1

7 0

2

1

7 0

7

1 0 7 1 0 2 1 2 3 0 3 2 4 0 3 0 2 1 7 0

10 page faults

COP 4600: Intro To OS (Memory Management – Part 4) Page 37 © Dr. Mark Llewellyn

LRU Algorithm On S and SR
reference string = S

1

2

3

fr
a
m

e
 7

7

7

7 0

7

7 0

1

0

7 1

2

1

7 2

0

2

7 0

3

2

7 3

0

3

7 0

4

0

7 4

2

4

7 2

3

2

7 3

0

2

7 0

3

0

7 3

2

3

7 2

1

3

7 1

2

1

7 2

0

2

7 0

1

0

7 1

7

1

7 7

0

7

7 0

1

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 1 0

12 page faults

reference string = SR

1

2

3

fr
a
m

e
 1

7

1

7 0

1

7 0

7

0

7 7

1

7

7 1

0

1

7 0

2

0

7 2

1

0

7 1

2

1

7 2

3

2

7 3

0

2

7 0

3

0

7 3

2

3

7 2

4

2

7 4

0

4

7 0

3

4

7 3

0

3

7 0

2

0

7 2

1

2

7 1

0

1

7 0

7

1 0 7 1 0 2 1 2 3 0 3 2 4 0 3 0 2 1 7 0

12 page faults

COP 4600: Intro To OS (Memory Management – Part 4) Page 38 © Dr. Mark Llewellyn

LRU Algorithm (cont.)

• The LRU algorithm is often used as a page replacement

protocol and is considered to be a reasonably good technique.

• The major problem is how to implement LRU replacement.

• An LRU page-replacement algorithm may require substantial

hardware assistance.

• The problem is to determine an order for the frames as defined

by their last time of use.

• Two implementations are feasible:

1. Counters

2. Stack

COP 4600: Intro To OS (Memory Management – Part 4) Page 39 © Dr. Mark Llewellyn

LRU Algorithm – Counter Implementation
• In the simplest case, each page-table entry has an associated time-

of-use field and the CPU must include a logical clock or counter.

• The clock is incremented for every memory reference.

• Whenever a reference to a page is made, the content of the clock

register are copied into the time-of-use field in the page-table

entry for that page. This records the “time” of the last reference

to that page.

• The page which is selected as a “victim” is the page with the

smallest time value (the oldest page).

• This scheme requires a search of the page table to find the LRU

page and a write to memory for each memory access. The times

must also be maintained when page tables are changed due to

CPU scheduling.

COP 4600: Intro To OS (Memory Management – Part 4) Page 40 © Dr. Mark Llewellyn

LRU Algorithm – Stack Implementation
• Another approach to implementing LRU replacement is to keep a

stack of page numbers.

• Whenever a page is referenced, it is removed from the stack and

put on the top. In this manner, the most recently used page is

always on the top of the stack and the least recently used page is

always on the bottom.

• Since entries are removed from the middle of the stack, the stack

is typically implemented as a doubly linked list with head and tail

pointers.

• In this fashion, removing a page and putting it on the top of the

stack requires changing six pointer values in the worst case.

• Each update is more expensive (a bit) but there is no search

required to find the LRU page.

COP 4600: Intro To OS (Memory Management – Part 4) Page 41 © Dr. Mark Llewellyn

Use Of A Stack to Record The Most Recent

Page References

COP 4600: Intro To OS (Memory Management – Part 4) Page 42 © Dr. Mark Llewellyn

More On Belady’s Anomaly
• Did you notice in the examples for the Optimal algorithm and the LRU

algorithm that increasing the number of page frames allocated to a

process did not increase the number of page faults as was the case with

the FIFO algorithm?

• It turns out that the Optimal algorithm and the LRU algorithm belong to

a class of algorithms known as stack algorithms.

• A stack algorithm is an algorithm for which it can be shown that the set

of pages in memory for n frames is always a subset of the pages that

would be in memory with n+1 page frames.

• Consider the LRU algorithm. The set of pages that would be in

memory with an n frame allocation would be the n most recently used

pages. If the number of page frames is increased, then these n pages

will still be the most recently referenced and so would still be in

memory.

• Stack algorithms do not suffer from Belady’s anomaly.

COP 4600: Intro To OS (Memory Management – Part 4) Page 43 © Dr. Mark Llewellyn

LRU Approximation Algorithms
• Unfortunately, few computer systems provide sufficient hardware support

for true LRU page replacement. Some systems provide no hardware

support and must rely on page replacement algorithms such as FIFO.

• Many systems however, do provide some support in the form of a

reference bit.

• The reference bit for a page is set by the hardware whenever that page is

referenced (either by a read or a write to any byte in the page).

• Reference bits are associated with each entry in the page table.

• Initially, all bits are cleared (set to 0) by the OS. As a user process

executed, the bit associated with each page referenced is set (to 1) by the

hardware. After some period of time, we can determine which pages have

been used and which have not been used by examining the reference bits,

although we do not know the order of their use.

• This information is the basis for many page-replacement algorithms that
approximate the behavior of the LRU algorithm.

COP 4600: Intro To OS (Memory Management – Part 4) Page 44 © Dr. Mark Llewellyn

Additional-Reference-Bits Algorithm
• Additional information about the order in which pages are

referenced can be obtained by recording the reference bits at

regular intervals.

• A single byte (8-bits) is maintained for each page in a table in

memory.

• At regular intervals (say 100 msec), a timer interrupt transfers

control to the OS. The OS shifts the reference bit for each page

into the high-order bit of the its byte, shifting the other bits in the

byte, one bit to the right and discarding the low-order bit.

• These 8-bit shift registers contain the history of page use for the

last eight time periods.

• If the shift register for a page contains 00000000, then that page

has not been referenced for eight time periods.

COP 4600: Intro To OS (Memory Management – Part 4) Page 45 © Dr. Mark Llewellyn

Additional-Reference-Bits Algorithm (cont.)

• Similarly, a page that has been referenced at least once during

each of the last eight time periods would have a history register

value of 11111111.

• A page with a history register value of 11000100 has been used

more recently than a page with a register value of 01110111.

• If the history register values are interpreted as unsigned integers,

the page with the lowest number is the LRU page.

• Notice, that the numbers may not be unique, so it is possible to

page out all of the pages with the smallest value, or use the FIFO

method to choose amongst them.

• The number of bits of history can be varied and is typically

selected, depending on the hardware available, to make the

updating as fast as possible.

COP 4600: Intro To OS (Memory Management – Part 4) Page 46 © Dr. Mark Llewellyn

Second-Chance Algorithm

• In the extreme case, the number of bits in the history register is reduced

to 0 (i.e., there is no history register, only the reference bit on the page).

• In this case, the page-replacement algorithm is called the second-chance

page-replacement algorithm.

• The basic algorithm of second-chance replacement is FIFO, however,

when a page has been selected, its reference bit is checked. If the value

is 0, the page is replaced; but if the value is 1, we give the page a

second chance and move on to select the next FIFO page.

• When a page gets a second chance, its reference bit is cleared, and its

arrival time is reset to the current time. Thus, a page that is given a

second chance will not be replaced until all other pages have been

replaced (or given second chances).

• Additionally, if a page is used often enough to keep its reference bit set

to 1, it will never be replaced.

COP 4600: Intro To OS (Memory Management – Part 4) Page 47 © Dr. Mark Llewellyn

Clock Algorithm

• One way to implement the second-chance algorithm is via a circular

queue. This implementation is referred to as the clock algorithm.

• A pointer (i.e., a hand on the clock) indicates which page is to be

replaced next.

• When a frame is needed, the pointer advances until it finds a page with

a 0 reference bit. As it advances, it clears all the reference bits.

• Once a victim page is found, the page is replaced, and the new page is

inserted in the circular queue in that position.

• The figure on the next page illustrates this implementation.

• Notice that, in the worst case, when all bits are set, the pointer cycles

through the entire queue, giving each page a second chance. It clears

all the reference bits before selecting the next page for replacements.

• Second-chance degenerates to FIFO if all the replacement bits are set.

COP 4600: Intro To OS (Memory Management – Part 4) Page 48 © Dr. Mark Llewellyn

Clock Page-Replacement Algorithm

COP 4600: Intro To OS (Memory Management – Part 4) Page 49 © Dr. Mark Llewellyn

Enhanced Second-Chance Algorithm

• The second-chance algorithm can be enhanced by considering the

reference bit and the modify bit (the bit used to indicate whether any

bit on a page has been modified) as an ordered pair.

• With these two bits, there are four possible classes that can be

defined:

1. (0,0) neither recently used nor modified, the best page to replace.

2. (0,1) not recently used but modified, not quite as good because the page

will need to be written out before it can be replaced.

3. (1,0) recently used but clean – probably will be used again soon.

4. (1,1) recently used and modified – probably will be used again soon, and

the page will need to be written to disk before it can be replaced. Worst

case as a victim.

• Each page is in one of these four classes.

COP 4600: Intro To OS (Memory Management – Part 4) Page 50 © Dr. Mark Llewellyn

Enhanced Second-Chance Algorithm (cont.)

• When page replacement is required, the same basic scheme as the

clock algorithm is utilized; but instead of examining whether the page

to which the pointer is pointing has the reference bit set to 1, a check

is made to determine the class to which that page belongs.

• The page to replace is the first page encountered in the lowest

nonempty class.

• Notice that the circular queue may require several scans before a page

to replace can be found.

• The major difference between this algorithm and the simpler clock

algorithm is that in this case preference is given to those pages that

have been modified in order to reduce the number of I/O operations

that will be required.

COP 4600: Intro To OS (Memory Management – Part 4) Page 51 © Dr. Mark Llewellyn

LRU Approximation Algorithms
Counter-Based Algorithms

• Keep a counter of the number of references that have been

made to each page.

• Least Frequently Used (LFU) Algorithm: replaces the page

with the smallest counter value. The reason for this selection

is that an actively used page should have a large reference

count.

– A problem arises however, when a page is used heavily during the

initial phase of a process but then is never used again. Since it was

used heavily, it has a high reference count and remains in memory

even though it is no longer needed.

– One solution is to shift the bits in the counter to the right by 1 bit at

regular intervals, forming an exponentially decaying average use

count.

COP 4600: Intro To OS (Memory Management – Part 4) Page 52 © Dr. Mark Llewellyn

LRU Approximation Algorithms
Counter-Based Algorithms (cont.)

• Most Frequently Used (MFU) Algorithm: based on the

argument that the page with the smallest count was probably

just brought in and has yet to be used.

• As you might expect, neither LFU or MFU replacement is

very common. The implementation of these algorithms is

expensive, and they do not approximate the Optimal

replacement algorithm well.

COP 4600: Intro To OS (Memory Management – Part 4) Page 53 © Dr. Mark Llewellyn

Allocation Of Frames

• In addition to selecting a victim for page replacement, we must

also consider the allocation of frames to processes.

• We saw that with the FIFO page-replacement algorithm that the

number of page faults may actually increase for an increase in

frame allocation. Although stack algorithms do not suffer from

Belady’s anomaly, the performance of processes running under

these types of page replacement protocols are certainly impacted

by the number of frames allocated to the process.

• If for example, we have 100 free frames and two processes, how

many frames does each process get?

COP 4600: Intro To OS (Memory Management – Part 4) Page 54 © Dr. Mark Llewellyn

Allocation Of Frames (cont.)

• Consider a single-user system with 128 KB of memory composed

of pages 1 KB in size. This system would have 128 frames.

• Suppose the OS requires 35 frames, leaving 93 frames for the user

process.

• Under pure demand paging, all 93 frames would initially be put on

the free frame list. When a user process begins execution, it would

generate a sequence of page faults.

• The first 93 faults would all get free frames from the free frame

list.

• When the free frame list was exhausted, a page-replacement

algorithm would be used to select one of the 93 in-memory pages

to be replaced with the 94th, and so on.

• When the process terminates, the 93 frames would be returned to

the free frame list.

COP 4600: Intro To OS (Memory Management – Part 4) Page 55 © Dr. Mark Llewellyn

Allocation Of Frames (cont.)

• There are many variations on the simple strategy outlined on the

previous page.

– We could require that the OS allocate all its buffer and table space

from the free-frame list, when not used by the OS, it can be used to

support user paging.

– We could try to maintain a three page frame reserve on the free

frame list at all times. Thus, whenever a process page faults, there

is always a free frame available to page into. While paging is

occurring, a replacement can be selected, which is then written

back to the disk as the user process continues to execute.

• Other variants are possible, but the basic strategy is clear: the

user process is allocated any free frame.

COP 4600: Intro To OS (Memory Management – Part 4) Page 56 © Dr. Mark Llewellyn

Minimum Number Of Frames
• Strategies for the allocation of frames are constrained in a variety

of ways.

• It is not possible, for example, to allocate more than the total

number of available frames (unless there is page sharing).

• A minimum number of frames must also be allocated to each

process.

• The obvious reason that a minimum number of frames must be

allocated is performance.

– As the number of frames allocated to each process decreases, the page-

fault rate increases, slowing process execution.

• Another reason is that when a page fault occurs before an executing

instruction is complete, the instruction must be restarted.

Consequently, the process must have enough frames to hold all the

different pages that any single instruction can reference.

COP 4600: Intro To OS (Memory Management – Part 4) Page 57 © Dr. Mark Llewellyn

Minimum Number Of Frames (cont.)

• An example is the IBM 370 MVC (move characters) instruction.

This instruction takes 6 bytes and can straddle two pages. The

block of characters to move and the area to which it is to be

moved can each also straddle two pages. This situation would

require six frames.

• The worst case scenario occurs when the MVC instruction is

itself the operand of an EXECUTE instruction that straddles a

page boundary; in this case, two additional frames are required,

bringing the total to eight.

• Whereas the minimum number of frames is determined by the

computer architecture (through its instruction set), the maximum

number of defined by the amount of physical memory. In

between these two values, we are left with a significant choice in

frame allocation.

COP 4600: Intro To OS (Memory Management – Part 4) Page 58 © Dr. Mark Llewellyn

Frame Allocation Algorithms

• The easiest way to split m frames among n processes it to give

each process an equal share, m/n frames. This scheme is known

as equal allocation.

– For example, if there are 93 frames and 5 processes, each process will get

93/5 = 18.6 = 18 frames. The leftover 3 frames can be used as a free

frame pool.

• An alternative is to recognize that various processes will need

differing amounts of memory.

– For example, consider a system with 1 KB frames. A process of 10 KB

and a second process of 127 KB are the only two processes running with

62 free frames. It makes no sense to give 31 frames to the 10 KB process

which in the worst case will need only 10 frames, which will waste the

other 21 frames, which could have been allocated to the 127 KB process.

• This alternative is known as proportional allocation.

COP 4600: Intro To OS (Memory Management – Part 4) Page 59 © Dr. Mark Llewellyn

Proportional Allocation

m
S

s
p for allocation a

frames of number total m

sS

p process formemory virtual of size s

i
ii

i

ii











5964
137

127
a

564
137

10
a

127s

10s

64m

2

1

2

i











• Using proportional allocation we have the following:

• Example

Note: With either equal or

proportional allocation, the allocation

may vary depending on the degree

of multiprogramming. If the

multiprogramming level is increased,

each process will lose some frames

to meet the allocation for the new

process. Similarly, if the degree of

multiprogramming is decreased, the

frames that were previously

allocated to the departed process

can be spread over the remaining

processes.

COP 4600: Intro To OS (Memory Management – Part 4) Page 60 © Dr. Mark Llewellyn

Priority Allocation

• Use a proportional allocation scheme using priorities

rather than size.

• If process Pi generates a page fault,

– select for replacement one of its frames

– select for replacement a frame from a process with

lower priority number

COP 4600: Intro To OS (Memory Management – Part 4) Page 61 © Dr. Mark Llewellyn

Global vs. Local Allocation
• Another important factor in the way frames are allocated to the

various processes is page replacement.

• With multiple processes competing for frames, we can classify
page-replacement algorithms into two broad categories:

– Global replacement – process selects a replacement frame from the set of
all frames; one process can take a frame from another.

– Local replacement – each process selects from only its own set of
allocated frames.

• For example, consider an allocation scheme where we allow
high-priority processes to select frames from low-priority
processes for replacement. A process can select a replacement
among its own frames or the frames of any lower-priority
process. This approach allows a high-priority process to
increase its frame allocation at the expense of a low-priority
process.

COP 4600: Intro To OS (Memory Management – Part 4) Page 62 © Dr. Mark Llewellyn

Global vs. Local Allocation (cont.)

• With a local replacement strategy, the number of frames allocated to a
process does not change (unless the degree of multiprogramming changes).

• With global replacement, a process may happen to select only frames
allocated to other processes, thus increasing the number of frames allocated
to it (assuming that other processes did not choose its frames for
replacement).

• One problem with a global replacement algorithm is that a process cannot
control its own page-fault rate. The set of pages in memory for a process
depends not only on the paging behavior of that process but also on the
paging behavior of other processes. Therefore, the same process may
perform quite differently for different executions because of totally external
circumstances.

• Under local replacement, the set of pages in memory for a process is affected
by the paging behavior of only that process.

• Local replacement might hinder a process, however, by not making available
to it other, less used pages of memory.

• Thus, global replacement generally results in greater system throughput and
is therefore the more common method.

COP 4600: Intro To OS (Memory Management – Part 4) Page 63 © Dr. Mark Llewellyn

Thrashing

• If a process does not have “enough” pages, the page-

fault rate is very high.

• This leads to:

– low CPU utilization

– operating system thinks that it needs to increase the degree

of multiprogramming

– another process added to the system

• Thrashing  a process is busy swapping pages in and

out without accomplishing any real activity.

COP 4600: Intro To OS (Memory Management – Part 4) Page 64 © Dr. Mark Llewellyn

Thrashing (cont.)

COP 4600: Intro To OS (Memory Management – Part 4) Page 65 © Dr. Mark Llewellyn

Demand Paging and Thrashing

• Why does demand paging work?

Locality model

– Process migrates from one locality to another

– Localities may overlap

• Why does thrashing occur?

 size of locality > total memory size

COP 4600: Intro To OS (Memory Management – Part 4) Page 66 © Dr. Mark Llewellyn

Locality In A

Memory-Reference

Pattern

COP 4600: Intro To OS (Memory Management – Part 4) Page 67 © Dr. Mark Llewellyn

Working-Set Model

•   working-set window  a fixed number of page references

Example: 10,000 instructions.

• WSSi (working set size of process Pi) =

 total number of pages referenced in the most recent 

 (time variant)

– if  too small will not encompass entire locality

– if  too large will encompass several localities

– if  =   will encompass entire program

• D =  WSSi  total demand frames

• if D > m  Thrashing

• Policy if D > m, then suspend one of the processes

COP 4600: Intro To OS (Memory Management – Part 4) Page 68 © Dr. Mark Llewellyn

Working-set model Example

Assume Δ = 10

COP 4600: Intro To OS (Memory Management – Part 4) Page 69 © Dr. Mark Llewellyn

Working Set Model – Another Example

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

• Δ = 3

reference string

1

2

3

W
S

7

7

7

7 0

7

7 0

1

2

7 0

1

2

7 0

1

2

7 0

3

0

7 3

0

7 4

3

2

7 4

0

2

7 4

3

2

7 0

3

0

7 3

2

7 0

3

2

7 3

1

2

7 0

1

2

7 0

1

2

7 0

1

1

7 0

7

1

7 0

7

1

7 0

7

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 1 0

13 page faults

1 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 WSS

COP 4600: Intro To OS (Memory Management – Part 4) Page 70 © Dr. Mark Llewellyn

Working-Set Model (cont.)

• Once Δ has been selected, using the working set model is simple.

• The OS monitors the working set of each process and allocates to

that working set enough page frames to provide it with its

working set size.

• If there are enough extra frames, another process can be initiated.

• If the sum of the working set sizes increases, exceeding the total

number of available frames, the OS will select a process to

suspend. The suspended process’s pages are swapped out, and

its frames are reallocated to other processes. The suspended

process will be restarted later.

• The working set strategy prevents thrashing while keeping the

degree of multiprogramming as high as possible, thus optimizing

CPU utilization.

COP 4600: Intro To OS (Memory Management – Part 4) Page 71 © Dr. Mark Llewellyn

Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example:  = 10,000

– Timer interrupts after every 5000 time units

– Keep in memory 2 bits for each page

– Whenever a timer interrupts copy and sets the values of all

reference bits to 0

– If one of the bits in memory = 1  page in working set

• Why is this not completely accurate? Because you can’t tell

where, within an interval of 5000, a reference occurred.

• Improvement = 10 bits and interrupt every 1000 time units. The

disadvantage to this approach is higher cost to service more

frequent interrupts.

COP 4600: Intro To OS (Memory Management – Part 4) Page 72 © Dr. Mark Llewellyn

Page-Fault Frequency Scheme

• While the working set model is successful, and knowledge of

the working set can be useful for prepaging (more later), it is a

clumsy mechanism for controlling thrashing.

• A strategy that uses the page-fault frequency (PFF) is a more

direct approach for controlling thrashing.

• Since thrashing exhibits a very high page fault rate, we need to

control the page fault rate.

– Too high a page fault rate implies that a process needs more page

frames.

– Too low a page fault rate implies that a process may have more

page frames than it needs.

• Establish upper and lower bounds on the page fault rate.

COP 4600: Intro To OS (Memory Management – Part 4) Page 73 © Dr. Mark Llewellyn

Page-Fault Frequency Scheme

• Establish an “acceptable” page-fault rate

– If the actual page fault rate is too low, process loses frames.

– If the actual page fault rate is too high, process gains frames

COP 4600: Intro To OS (Memory Management – Part 4) Page 74 © Dr. Mark Llewellyn

Working Sets and Page Fault Rates

• There is a direct relationship between the working set of a

process and its page fault rate.

• As shown in the example on page 75, typically the working set

of a process changes over time as references to code and data

sections move from one locality to another.

• Assuming that the process is not thrashing (i.e., it has a

sufficient frame allocation), the page fault rate of the process

will transition between peaks and valleys over time.

• This general behavior is illustrated on the next page.

COP 4600: Intro To OS (Memory Management – Part 4) Page 75 © Dr. Mark Llewellyn

Working Sets and Page Fault Rates (cont.)

P
a

g
e

 f
a

u
lt
 r

a
te

time

working set

COP 4600: Intro To OS (Memory Management – Part 4) Page 76 © Dr. Mark Llewellyn

Working Sets and Page Fault Rates (cont.)

• A peak in the page fault rate occurs when demand paging

begins in a new locality.

• Once, the working set of the new locality is in memory, the

page fault rate falls.

• When the process moves to a new working set, the page fault

rate rises towards a peak once again, returning to a lower rate

once the new working set is in memory.

• The span of time between the start of one peak and the start of

the next peak illustrates the transition from one locality to

another (one working set to another).

COP 4600: Intro To OS (Memory Management – Part 4) Page 77 © Dr. Mark Llewellyn

Process Suspension

• If the degree of multiprogramming is to be reduced, one or more of

the currently resident processes must be suspended (swapped out).

• There are six commonly used choices:

1. The lowest priority process – this implements a scheduling policy

decision and is unrelated to performance issues.

2. The faulting process – the idea here is that there is a greater

probability that the faulting process does not have its working set

resident, and performance would suffer the least by suspending it.

In addition, this choice would have an immediate payoff because it

blocks a process that is about to be blocked anyway and eliminates

the overhead of a page replacement and I/O operation.

COP 4600: Intro To OS (Memory Management – Part 4) Page 78 © Dr. Mark Llewellyn

Process Suspension

3. The last process activated – this is the process that is least likely to

have its working set resident.

4. The process with the smallest resident set – this will require the least

future effort to reload the process. However, it penalizes processes

with strong locality.

5. The largest process – this obtains the most free frames in an

overcommitted memory, making additional deactivation in the near

future unlikely.

6. The process with the largest remaining execution window – in most

process scheduling schemes, a process may run for only a certain

quantum of time before being interrupted and placed at the end of the

ready queue. This approximates a shortest processing time first

scheduling discipline.

